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Electrochemical cells of all types are composed of various electrically conduc-
tive materials. The nature and degree of conductivity of the cell can substan-
tially affect the current through the cell, the electric field strengths throughout
the cell, and the transport of charged particles from one cell region to another.
Thus the phenomenon of conductance is highly relevant to all nonequilibrium
electrochemical techniques. For studies that emphasize interfacial behavior, it
is helpful to understand the potential fields and ionic transport that occur in the
bulk materials adjoining the interfaces. For the study of bulk electrical proper-
ties, factors that affect the accuracy and precision of the conductivity measure-
ment determine the limits of usefulness of conductometric detection and deter-
mination.

As we shall see, the solution conductivity depends on the ion concentra-
tion and the characteristic mobility of the ions present. Therefore, conductiv-
ity measurements of simple, one-solute solutions can be interpreted to indicate
the concentration of ions (as in the determination of solubility or the degree of
dissociation) or the mobility of ions (as in the investigations of the degree of
solvation, complexation, or association of ions). In multiple-solute solutions, the
contribution of a single ionic solute to the total solution conductivity cannot be
determined by conductance measurements alone. This lack of specificity or
selectivity of the conductance parameter combined with the degree of tedium
usually associated with electrolytic conductivity measurements has, in the past,
discouraged the development of conductometry as a widespread electroanalyti-
cal technique. Today, there is a substantial reawakening of interest in the prac-
tical applications of conductometry. Recent electronic developments have re-
sulted in automated precision conductometric instrumentation and applications
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are being developed in which conductometry is used to follow the course of
highly specific chemical reactions or varying solute concentrations for chromato-
graphic detection.

In this chapter we take a careful look at the phenomenon of electrical
conductivity of materials, particularly electrolytic solutions. In the first section,
the nature of electrical conductivity and its relation to the electrolyte composi-
tion and temperature is developed. The first section and the second (which deals
with the direct-current contact methods for measuring conductance) introduce
the basic considerations and techniques of conductance measurement. This in-
troduction to conductance measurements is useful to the scientist, not only for
electrolytic conductance, but also for understanding the applications of common
resistive indicator devices such as thermistors for temperature, photoconductors
for light, and strain gauges for mechanical distortion. The third section of this
chapter describes the special techniques that are used to minimize the effects of
electrode phenomena on the measurement of electrolytic conductance. In that
section you will encounter the most recent solutions to the problems of conduc-
tometric measurements, the solutions that have sparked the resurgent interest in
analytical conductometry.

1. SOME BASIC RELATIONSHIPS

A material exhibits the property of electrical conductivity when it contains
charged particles that are free to move through the material. When an electri-
cal potential is applied across such a material, the charged particles will expe-
rience a force along the field in a direction opposite to their charge. The resulting
net motion of the charged particles is an electric current. The greater the cur-
rent produced by a given electric field, the greater the conductivity of the
material. Since conductivity is related to the rate of flow of charge in response
to an electric field, the magnitude of the conductivity is dependent on the con-
centration, mobility, and charge of the charged particles. In this section, the
relationship between the conductivity and the mobility, charge, and concentra-
tion of the charged species is developed. Finally, the property of conductivity
is related to the measured parameter, conductance.

A. Conductivity

When a charged particle 1 (an electron or ion) in a liquid or solid material is
subjected to an electric field, it quickly reaches a limiting average velocity of
motion in the direction of the field opposite to the sign of its charge. The ve-
locity v, (cm/s) is given by

vV, =u€ 8.1
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where u, is the particle’s mobility and € is the electric field strength (V/cm).
The resulting electric current density (J; in C/s-cm?) is given by

J, = vNg, (8.2)

1

where N, is the number of i particles per cubic centimeter and q; is the coulombic
charge on each particle. Note that the sign of v, will change with the sign of q;
so that J is positive for particles of either sign. Substituting Equation 8.1 in
Equation 8.2, we obtain

Ji = eN;|qi|y (8.3)

where the absolute value of q; is required since the vector quantity v; has been
eliminated.

B. Ionic Conductivity

The total current density J is the sum of the individual current density charge
carriers in the substance.

n n
J=>J =) Nlaly (8.4)
i=l i=1

The electrical conductivity K has been defined as the current density per unit
electric field, that is,

J
K=-—
a (8.5)
Combining Equations 8.4 and 8.5, we have
K=Y Nilaly (8.6)
i=1

From Equation 8.6 it is clear that any change in the substance that affects the
concentration or mobility of any of the charge carriers affects the conductivity
of the substance. Ionic concentration can be affected by shifts in chemical equi-
librium between charged and uncharged species (such as a weak acid and the
weak acid anion) or among variously charged species (such as a metal cation
with a varying number of anionic ligands). Shifts in chemical equilibrium can
be caused by titration with a reaction, or by changes in ionic strength, solvent,
or temperature. These latter factors also affect the ionic mobility in significant
and complex ways.
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In chemical applications, the concentration units of mol/L are more use-
ful than ions/cm?. From Equation 8.3 and the relationship N, = C.N, /1000,

17 "av

where C, is the molar concentration of i and N, is Avogadro s number,

CN,,
Ji= e 000 |q |u; (8.7)
The charge on an ion q; can be given by q, = Z,q,, where Z, is the charge
number of the ion and q, is the unit electron charge in coulombs. Also, the
quantity N,.q, is defined as the faraday, F. Thus |q; = |Z; F/N,,. The indi-
vidual ion current density can now be written

\ CiFav
J, = 5_—1000 lZi!ui (8.8)

and the conductivity, considering all species, is

= To00 - ZC 2. Ju 8.9

In the case of a dissolved simple salt, the mobile charges are the cations and
anions resulting from the solvation and dissociation of the salt. The conductivity
is thus

F
K= 1000(c 1Z,|u, +C_|Z_|u_) (8.10)

Electrical neutrality requires that the charge concentration for positive and nega-
tive charges be equal, that is,

C,l|z,|=C.|Z| (8.11)

If the salt is completely dissociated, the normality of the salt solution, C*, is
equal to C, |Z,| = C_|Z]. The equivalent conductance A of a salt solution is
defined as

1000K
C*

A= (8.12)
whether the salt is completely dissociated or not. In Equation 8.12, C* is the
normality of the salt solution, not just the concentration of the ions. Clearly, A
depends on the degree of dissociation of the salt, having a lower value for a
lower degree of dissociation. The dissociation reaction can be studied by mea-
suring A as a function of C* [1,2].
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The definition in Equation 8.12 does not require complete dissociation, but
if the salt is completely dissociated, from Equation 8.10,

_CF
1000

(u, +u_) complete dissociation (8.13)

Combining Equations 8.12 and 8.13 gives us
A = F(u, +u_) complete dissociation (8.14)
Now the ionic equivalent conductance A can be defined for each ion.

A, =Fu, A_=Fu A, =Fy (8.15)

Substituting the expressions for A, and A_ into Equations 8.13 and 8.14, we
have, for the case of complete dissociation,

K= ISOO (A, +A_) complete dissociation (8.16)
and
A=A, +A_ complete dissociation (8.17)

Since A depends on the mobility of the ion, it is a function of the ion type and
of the solution parameters (solvent, solute concentration, temperature, etc.). At
very low solute concentrations, A reaches a steady “limiting” value, A, that is
often tabulated for the common ions in water solvent at specific temperatures.
A table of A? values is given in Table 8.1. The A? values from such a table can
be used to estimate the conductivity of a completely dissociated salt solution by
application in Equation 8.10. For finite salt concentrations, the calculated val-
ues are indicative, but not exact. Onsager, Fuoss, and others [2,3] have devel-
oped equations by which quite accurate values of A can be calculated from A°
values under certain circumstances.

In analytical applications of conductometry, the sample often contains many
species of ions, each contributing to the total conductivity. The total conduc-
tivity is then

K C A; = z C. |Z |k complete dissociation or (8.18)

IOOO actual ion concentrations

where C* and C, are the normality and molarity, respectively, of the ionic
species i in the solution. Thus, in using Equation 8.18 to calculate (or estimate)
the conductivity of a solution, all ionic species present must be included. Also,
Equation 8.18 shows that the variation in concentration or mobility of any of
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Table 8.1 Limiting Equivalent Conductance of Ions in Water at 25°C

Cations A9 Anions A0

H* 249.8 OH- 199.2
Li* 38.6 F- 55.4
Na* 50.1 Cl- 76.4
K* 73.5 Br- 78.1
Rb* 77.8 I- 76.8
Ag* 61.9 NOj; 71.5
NH#+ 73.5 Cl0; 64.6
(CH,),NH; 51.8 Cl0; 67.4
(CH,);NH* 47.2 10; 54.5
(CH;)N* 44.9 Formate 54.6
Mg?* 53.0 Acetate 40.9
Ca%* 59.5 Benzoate 32.4
Ba?* 63.6 SO;- 80.0
Cu?* 53.6 CO;5- 69.3
Zn** 52.8 Fe(CN)g- 111.0
La3* 69.7 — —

Ce3* 69.8 — —

Source: Reprinted in part from Reference 2, p. 463, with permission. Copyright
1968 Butterworths.

the ionic species will result in a change in K. A change in temperature can affect
both ion concentration and mobility by affecting ion dissociation, complexation,
and solvation equilibria as well as solvent viscosity. The combined effects are
often complex and rarely negligible.

C. Conductance

When a voltage source of E volts is connected across the contacts of conduct-
ing material as shown in Figure 8.1, the mobile charges move in the conduct-
ing material in response to the field. The electric field £ applied to the conductor
is E/t. From Equation 8.5 the resulting current density J is

_EK
¢

J=¢gK (8.19)

The total current I is current density times the area a:

_ EKa
0

J=1Ja (8.20)



Conductivity and Conductometry 243

+ —

area = a cm?

Figure 8.1 The application of an electric field across a conducting material is ac-
complished by placing the material between metallic contacts and applying an electrical
potential to those contacts.

From Equation 8.20 we see that the current in a conductor is proportional to
the voltage across it. The proportionality constant Ka/( is defined as the con-
ductance G:

G=K n (8.21)
The current-voltage relationship is now simply
I =EG (8.22)

This relationship was first articulated by Ohm, who also defined the resistance
R of a conductor as the reciprocal of the conductance,

1
R=— 2
S (8.23)
so that Ohm’s law is also often written
E
I:E or E=IR (8.24)

Another way to state Equation 8.24 is that the voltage across a resistor is pro-
portional to the current through the resistor. These simple relationships are the
basis of virtually all techniques of measuring conductance (or resistance); the
measurement of the I/E ratio for a conductor yields G directly, while the E/I
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ratio is equal to R. The unit of R (volts/ampere) is the ohm () and the unit of
G (amperes/volt) is the mho (Q1).

In the case of electrolytic solutions, it is G that is measured; that is, the
conductance of a cell filled with the sample solution. The conductance of an
actual cell is related to the conductivity of the solution and the geometry of the
cell as given by Equation 8.21. The conductance of the solution is proportional
to the area a of the electrodes and inversely proportional to the distance between
them, so that K is calculated from a measurement of G by K = G#/a, where
the factor {/a is often called the cell constant. Actually, the exact cell constant
is rarely obtained by geometric measurement. It is generally determined empiri-
cally by measuring the conductance of a cell filled with a solution for which the
conductivity is exactly known.

1I. DC CONTACT MEASUREMENT OF CONDUCTANCE

The conductance of some materials can be measured by the scheme shown in
Figure 8.1 and Ohm’s law. The current can be measured for a given applied
voltage, or the voltage across the contacts can be measured when a known
current is passed between them. This approach depends on a free and uniform
transport of charge carriers through the interface between the metallic contacts
and the test material. Since the charge carriers in the metallic contacts are elec-
trons, the material to be tested also needs to be an electronic conductor. Some
nonmetallic electronic conductors (such as semiconductors) may require special
surface treatments at the contact interface to provide free electronic transport
through it. There are, fortunately, many devices, substances, and measurements
for which metallic contacts are sufficiently ideal and for which the simple rela-
tionships of Ohm’s law can be used as the basis of measurement. The ohmme-
ters and Wheatstone bridge described in the next two parts of this section can
be used where the metallic contact is effective. The consideration of special
contact problems will conclude this section.

A. Practical Ohmmeters

The resistance measurement concept used in a modern digital ohmmeter (or the
“ohms” scales of a digital multimeter) is shown in Figure 8.2. The readout
device is a digital voltmeter (DVM) composed of a fixed-range analog-to-digital
converter and decimal display. The full-scale reading of the digital voltmeter
is frequently 200.0 mV. A switchable constant-current source is applied across
the parallel combination of the DVM and the unknown resistance. It is assumed
that the DVM input resistance is so much larger than that of the unknown re-
sistance that all of the current passes through the test resistance. If the constant
current were exactly 1.000 mA, the voltage at the DVM input would be 1.000
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constant

Ry current DVM
source

Figure 8.2 The digital ohmmeter uses a constant-current source to produce a volt-
age across the unknown resistance proportional to its resistance, and a digital voltmeter
to read that voltage.

V for each ohm of resistance in the unknown. If the full-scale reading of the
DVM were 200.0 mV, the maximum resistance that could be measured would
be 200.0 Q. To measure higher values of resistance, smaller decade values of
current are applied; to measure lower values of resistance without loss of sig-
nificant figures, higher values of current are applied. The overall useful range
of this approach is determined on the low end by the contact resistance of the
probes and the maximum constant-current source available, and on the high end
by the lowest practical constant-current source and highest practical DVM in-
put resistance.

Operational Amplifier Resistance-to-Voltage Converters

For continuous laboratory monitoring of resistance, the operational amplifier
current follower circuit offers an easy means of converting either resistance or
conductance to a proportional voltage. In Figure 8.3a, R, is connected to the
voltage source E, and the result is a current i = E/R that is proportional to
the conductance of R,. The operational amplifier maintains an output voltage
such that point S is at the common potential. Therefore, the input current, i,
produces a voltage e, = iR, at the current-follower output. Also, the connec-
tion of G-to-I converter circuit to point S is equivalent to a connection to com-
mon,; that is, essentially no additional voltage or current is added to the input
circuit. Since i = E/R, and ¢, = -iR,

—ER
€ =% L = —ER(G, (8.25)

u
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Figure 8.3 Current-follower circuit for resistance measurement: (a) e, = -ER /R ;
(b) e, = -ER/R_.

This results in an output voltage directly proportional to the conductance of R,
within the output voltage and current capabilities of the operational amplifier.

In the circuit of Figure 8.3b, a fixed resistance R, is used in the input
current-generating circuit. Since this same current passes through R, and the
operational amplifier maintains point S at the common potential, the output
voltage e  is equal to -iR,. From

i=— and e =—iR (8.26)

e =——R (8.27)
R

A very useful application of the circuit of Figure 8.3b is produced if we
replace the feedback resistor R, with a resistive transducer such as a coated
semiconductor thermistor. The commercial availability of small, rapid-response,
chemically inert thermistors that have conveniently measurable resistances at
temperatures of 200-600 K makes them an excellent choice as the transducer
in chemical applications that require the rapid and accurate measurement of tem-
perature. Unfortunately, a continuous current in R, may produce undesirable
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Figure 8.4 Pulsed dc measurement of resistance.

Joule heating in the thermistor and its surroundings and thus cause an error in
the measurement. This error may be reduced by utilizing a pulsed voltage source
as illustrated in Figure 8.4. The logic signal A closes the electronic switch SW
and produces a current pulse in R, the duration of which is designated by PW
in the figure. The logic signal also switches the sample-and-hold module (S/H)
into the sample mode and causes the transient analog signal that is proportional
to R, to be held at the S/H output between pulses. The pulses need only be ap-
plied at the frequency of the desired temperature sampling rate and the output
of the S/H module may easily be connected to an analog-to-digital converter for
computer data acquisition.

B. Null Comparison Measurement

In a null comparison measurement of resistance, the effect of an unknown re-
sistance must be compared with the effect of a variable standard resistance under
conditions as identical as possible. Therefore, the unknown and standard resis-
tances are placed in identical circuits in such a way that the resulting voltage
or current in each circuit can be compared. Then the standard is varied until
the difference in voltage or current between the two circuits is zero. Several
methods for performing this comparison have been devised, of which the
Wheatstone bridge is by far the most common. Comparison methods for resis-
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tance measurement offer great accuracy, resolution, and relative independence
of the electronic sources and detectors used.

The Wheatstone Bridge

The Wheatstone bridge shown in Figure 8.5 provides the most direct and best
known circuit for comparison of unknown resistances against standard resis-
tances. Resistances R,, Ry, and R are standard resistance values that are used
in the measurement of the unknown resistance R,. Resistance R is made vari-
able and is adjusted until the null detector indicates that the bridge is balanced.

When the circuit is at balance, there is no current through the null detec-
tor and no potential difference between terminals x and y. At balance, four
significant conditions exist:

1. The current through R, and R is I;.
2. The current through Ry and R is 1,.
3. LR, = LR.

4. I,R, = LRy.

Therefore, R /R = R,/R; and

Ra
RB

R,=R (8.28)
It can be seen from Equation 8.28 that the unknown resistance R, is de-
termined from the values of the three standard resistances R, R,, and Ry. It is

common practice to make the ratio R,/Ry some exact decimal fraction or mul-
tiple such as 0.01, 0.1, 10, or 100 and to refer to this ratio as the “multiplier.”

— //*/2

Detector

Figure 8.5 Wheatstone bridge.
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The resistance R is variable continuously or in small increments so that the dial
reading of R times the multiplier setting equals the unknown resistance R,,. The
main sources of error in a Wheatstone bridge are the inaccuracies of the three
standard resistances R, R,, and Ry (as low as 0.001%), establishing the null
point, and thermal electromotive force (EMF) values.

The magnitude of the off-balance indication of the null detector of a Wheat-
stone bridge is sometimes used as a measure of the change in resistance of the
unknown resistor R,. In this application, R, is frequently a light-, temperature-,
or strain-dependent resistor. When matched devices are used for R and R, or
R, and R, an off-balance output is obtained that is related to the ratio of the
resistances of the two devices. This “comparative” resistance measurement with
matched devices can tend to cancel the effects of resistance changes due to en-
vironmental factors other than the measured quantity. For example, the resis-
tance of strain-gauge resistors depends on temperature and humidity as well as
strain. If twin strain gauges are used in adjacent arms of a Wheatstone bridge
with one gauge under strain but both in the same environment, the environmental
effects will not affect the resistance ratio and only the strain effect will affect
the off-balance output signal.

C. Contact Considerations

In all the preceding examples of conductance or resistance measurement, it was
assumed that the probe leads and the contacts to the measured conductor were
ideal. An ideal lead and contact have zero resistance and no thermally gener-
ated voltages or uncompensated contact potentials. In a very wide range of
measurements of electron-conducting devices, the ideal conditions are met within
the desirable or practical error limits. However, the measurement of very low
resistances can pose a problem in that the lead and contact resistance must be
negligible compared to the resistance measured. Normal lead and contact resis-
tance can be several tenths of an ohm, which limits 1% accuracy measurements
to values greater than about 50 Q.

The best technique for lower resistances is the four-contact method shown
in Figure 8.6. The leads and contacts that measure the voltage across the re-
sistor, caused by the current through the resistor, are not the same leads and
contacts that supply the current. Since the current does not appear in the volt-
meter leads or contacts, no error due to an iR voltage in the voltmeter contacts
will occur.

Direct contact techniques do not work with electrolytic solutions. One
cannot, for example, measure the resistance of salt water in a cell with an or-
dinary ohmmeter. This is due to the fact that the mobile charge carriers in an
electrolytic solution are ions, not electrons. The conversion of ionic to electronic
conduction at the electrode interface can only take place through an electrochemi-
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Figure 8.6 Four-contact technique for low-R measurement.

cal oxidation or reduction. The establishment of such a process involves a sub-
stantial potential difference between the electrode and the solution and has fi-
nite impedance characteristics as well. If the electrodes used to supply the
measurement current are separate from the iR drop measuring electrodes, as in
the four-electrode scheme described above, the effects of the interfacial reac-
tions at the current electrodes can be minimized. This approach is shown in
Figure 8.7. The technique actually measures the conductance of the part of the
solution that is in the capillary tubing between the two vials of the H cell. When
a current is applied from the current source, this current must appear in the
capillary section of the cell. The iR voltage in the capillary section is very much

F ] Voltmeter A *

\ ] V1]

e

Source T

Figure 8.7 Four-contact measurement of electrolytic conductance.
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larger than in the vials because of the much smaller cross-sectional area of the
capillary. Thus the voltmeter contacts to the solution in the vials measure the
voltage (iR drop) developed in the capillary section. If the voltmeter probe
contacts have stable and identical electrode-solution potentials, the interface
voltages will cancel in the voltmeter circuit. Reference-type electrodes are of-
ten used for the voltmeter probes.

III. CAPACITIVE CONTACT MEASUREMENT OF
CONDUCTANCE

A method of avoiding the effect of potential differences arising at the electrode-
solution interface is to take advantage of the capacitive behavior of the double
layer at the electrode surface to make ac (alternating current) contact with the
solution. To understand how this may be accomplished, it is necessary to con-
sider a basic model of a conductance cell and examine its behavior under the
influence of ac excitation. A review of ac circuit principles at a level sufficient
for understanding the behavior of conductance cells and the instrumentation for
conductance measurement is presented. The reader who desires a more thorough
study of this topic is directed to material contained in the references [4-7].

A. AC Excitation

At relatively low applied frequencies, a conductance cell may be represented
as the double-layer capacitance C; in series with the solution resistance R, as
shown in Figure 8.8a. When a sinusoidal voltage e is applied to the series RC
circuit, the instantaneous current i is the same in every part of the circuit and
is given by

i =1sin ot (8.29)

e
7 S
T e
% / R Z
C
T8

(a) (b)

Figure 8.8 Series RC circuit: (a) circuit; (b) current-voltage relationships; (c) fre-
quency dependence of impedance Z and phase angle ¢.
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where 1 is the maximum current, o is the angular frequency (rad/s) (o = 2nf,
where f is the frequency in Hz), and t is time (s). From Ohm’s law the instan-
taneous voltage e, across R is then

eg = iR = IR sin ot (8.30)

Since the instantaneous current in a capacitor is given by i = C (de/dt),

ec = [ide= S fTsinota 8.31)

1
=0 (—cos ot) (8.32)

S

It follows that the maximum voltage E. across C; occurs when -cos ot = 1 and
therefore,

E.=——=1—=1IX (8.33)

This expression has a form exactly analogous to Ohm’s law in dc circuits. The
quantity 1/oC; is called the capacitive reactance X. It is a measure of the
opposition to the flow of charge in a capacitor, and it is therefore measured in
ohms. If we now substitute the definition of X into the expression for e, it
follows that

Finally, applying the appropriate trigonometric identity, we obtain

ec = IX. sin(wt - -’25) (8.35)

A comparison of Equations 8.35 for e. and 8.30 for e, reveals two very im-
portant points: e lags e, by n/2 (a quarter cycle or 90° of phase) and e is
directly proportional to X, while e; is proportional to R.

Capacitive reactance is a frequency-dependent quantity, decreasing with
increasing frequency. Typically, double-layer capacitances for aqueous solutions
are 10-100 pF/cm?. Thus the capacitive reactance for a 1-cm? electrode with a
10-xF capacitance at an applied frequency of 10* rad/s (1.6 kHz) is

1

_ _ (8.36)
e o0 (10*Y107) 106
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The relationships among ey, e, e, and i for the series RC circuit are il-
lustrated in Figure 8.8b. Since the instantaneous voltages across R and C are
additive, e, may be obtained by graphically summing e, and e.. Note that the
current in the circuit is in phase with eg but is out of phase with ec by n/2 (90°),
and therefore the signal voltage is always between 0 and 90° out of phase with
the current. This phase difference is called the phase angle.

The total opposition to the current in an ac circuit is referred to as its
impedance Z, and in a simple RC network is given by the vector sum of R and
X, that is,

(8.37)

From the preceding expression and the expressions for e and ey, we see that
as the signal frequency is increased, X decreases, Z approaches R, and G
approaches 1/Z. The potential across C, also decreases gradually, and the phase
angle ¢ between i and e, approaches zero, as is illustrated in the plot of ¢ ver-
sus o in Figure 8.8c. For an RC circuit, there is a frequency for which X, =
R. The reciprocal of this frequency is called the time constant t. When R =
1/owC, 1/o = RC. Thus t = RC, in seconds.

It is desirable to measure R (and thus G) at a high frequency in order to
reduce X to a negligible value compared to R. Unfortunately, other compli-
cations arise if the frequency is increased above a few kilohertz, and therefore
other means must be devised to decrease X.. A commonly used remedy is to
increase the surface area and thus the capacitance of the electrodes as much as
possible. A 100-fold area increase is obtained by platinizing the electrodes, that
is, electrodepositing a layer of platinum black onto the platinum electrodes,
usually from a solution of chloroplatinic acid [8].

A high-frequency limit for the applied potential is encountered above sev-
eral kilohertz where the impedance of the conductance cell again begins to
deviate from the resistance R. Since the solution medium itself is a dielectric
situated between two parallel charged surfaces, it can assume the characteris-
tics of a capacitor placed in parallel across the solution resistance as shown in
Figure 8.9a. The magnitude of this capacitance is given by

. 10°D
P 4nc2(l/a)
where the quantities D, ¢, and l/a are the dielectric constant of the medium, the

speed of light, and the cell constant, respectively. The dilute aqueous solution
dielectric constant D is approximately 80, and if we assume a cell constant of

(8.38)
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Figure 8.9 Parallel RC circuit: (a) circuit; (b) current-voltage relationships;
(c) frequenCy dependence of impedance Z and phase angle ¢.

1 cm™!, the parallel capacitance is approximately 10 pF. At an applied frequency
of 10* rad/s (1.6 kHz) this capacitance results in X. = 10 MQ.

In order to assess the effect of Cp on the conductance measurements, the
analysis of the parallel RC network of Figure 8.9a may be carried out in a
manner analogous to the series network discussed previously. The situation
differs from the series circuit in that in this case, the voltage is the same across
R and C, and the currents i and ig in C, and R are different. The instanta-
neous currents are given by

and iR = (839)

x|

1~ =
C X
C

The current in the resistor, iy, is in phase with the applied voltage while the
current in the capacitor leads the applied voltage by 90° as illustrated in Fig-
ure 8.9b. To obtain an expression for the total current i, we must find the vector
sum of i and iy as follows:

(o) -

The cell impedance is then

Z::SS—: 1

i J(/X)? + (UR)? (8.41)

Thus if X = 10 MQ as already shown, the current path through C, only be-
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comes appreciable (for a 1% measurement) when the solution resistance ap-
proaches 100 kQ. Such situations are usually avoided by a judicious choice of
cell constant and concentration of electrolyte in the solution of interest.
Unfortunately, other experimental factors, such as contact capacitance at
the junction of the cell leads and the measurement system, lead capacitance, and
capacitance due to the dielectric properties of the thermostatting medium, may
contribute substantially to the parallel capacitance. These effects may be mini-
mized by proper choice of cell design and use of oil rather than water in the
thermostatting bath. The art of making ac conductance measurements has been
refined to a high degree of precision and accuracy, and detailed discussions of
the rather elaborate procedures that are often necessary are available [9,10].
The simple high- and low-frequency models of a conductance cell may be
combined in the network shown in Figure 8.10a. The response of this network

(a}

log f
(b}

Figure 8.10 Resistance with series and parallel capacitors: (a) circuit; (b) frequency
dependence of impedance.
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to ac excitation is illustrated in Figure 8.10b, in which the logarithm of the ratio
of the total impedance to the resistance is plotted as a function of the logarithm
of the frequency for several values of series and parallel RC time constants. It
is obvious from the curves that the solution resistance is best measured over a
fairly narrow midfrequency range or plateau. For some solutions this plateau
may not exist at all. However, if the plateau can be located, the solution resis-
tance is easily determined by measuring the cell impedance as discussed in the
following section.

B. Impedance Measurements

It is apparent from the previous discussion that in order to measure electrolytic
conductance we must devise a means for compensating for the effects of C and
C,. Figure 8.11 illustrates in block diagram form the elements of the impedance
measurement process. Basically, a sinusoid is impressed across the conductance
cell and the resulting signal is amplified and demodulated in such a way as to
produce a signal proportional to the resistive component of the cell impedance.
In the last step of the process, the signal is filtered to provide a dc voltage
suitable for driving a convenient readout device.

The most straightforward method for measuring impedance is accomplished
by choosing an excitation frequency for which Z = R (i.e., X, >> R >> XC ),
thus making the demodulation step trivial. A very basic circuit for measurmg
impedance at such frequencies is illustrated in Figure 8.12 [11]. This circuit
functions in much the same way as the current-follower circuit of Figure 8.3
except that diodes D, and D, have been added to rectify (demodulate) the sig-
nal resulting from the ac excitation of the cell [12]. As the input signal A drops
below zero volts, the summing point of the operational amplifier drops a very
small amount below ground potential. This causes the output to swing positive,
reverse biasing D, and forward biasing D,, causing the selected feedback re-
sistor, 10R, to be in the feedback loop. At this point, and for the remainder of
the negative half-cycle, the gain of the operational amplifier is 10R/Z ;.

As the input signal swings above 0 V, the output of the operational am-
plifier swings negative, causing D, to conduct and D, to block. This results in
a zero-gain situation and the output of the circuit at point B becomes zero. The
resulting rectified output is shown in waveform B. This waveform is filtered by
the passive RC network at the output to provide a dc signal that may be fed to

CELL

dc
ATION
0 w DEMODULATIONE FILTER ?!GNAL

EXCITATION

Figure 8.11 Impedance measurement system.
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Osc. O—4

{a)

(b)

Figure 8.12 Impedance measurement by phase-selective demodulation: (a) circuit dia-
gram, (b) waveforms. [From Ref. 11.]

a strip-chart recorder, digital voltmeter, or other readout device. The switches
SW1 and SW2 facilitate calibration of the output and selection of proper am-
plification for full-scale deflection of the readout device.

Since the output of the circuit is directly proportional to the conductance
of the cell (1/Z,, in this case), the circuit may be used as a direct-reading
detector for conductometric titration, reaction kinetic studies of fairly slow re-
actions, liquid chromatography, or ion-exchange chromatography.

The circuit may be easily constructed for a modest cost using inexpensive
operational amplifiers and any of a number of integrated circuit oscillators that
are commercially available. This basic piece of instrumentation is suitable for
student laboratory experiments, conductometric monitoring of distilled water or
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other flowing streams, and other routine applications that do not require high
precision or absolute accuracy. The instrument is limited to systems in which
the capacitive effects are negligible.

Another technique that is useful at frequencies of less than ~ 10 kHz is
phase-selective demodulation. A distinct advantage of this technique is that it
enables the separation of the resistive (in-phase or “real”) and capacitive (90°-
out-of-phase or “quadrature”) components of the cell impedance. This is accom-
plished through the process of cross-correlation [13] (selecting that component
of e, that correlates with the phase of i). The excitation voltage waveform is
multiplied by a square wave that is in phase with the cell current waveform.

We can understand how this is carried out by considering the waveforms
of Figure 8.13a. At frequencies for which parallel capacitive components of the
conductance cell impedance are negligible, sinusoidal excitation of the cell pro-
duces the waveforms of A, where e, eg, €., and i have the same significance
as previously discussed. In order to measure the real component of the imped-
ance, the magnitude of the correlation integral cc must be determined.

cc = Jres dt (8.42)
The function r is the bipolar square wave illustrated by waveform B, which has

an amplitude of unity and is in phase with e;. We shall demonstrate that the
integral of Equation 8.42 is proportional to R over the first half-cycle. As an

Low Pass Fiiter

(a) (b)

Figure 8.13 Conductance measurement by phase-selective demodulation: (a) wave-
forms; (b) circuit schematic.
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exercise, the reader may verify that this is true over the second half-cycle and
that cross-correlation of e, with a quadrature square wave results in an integral

that is proportional to Xg.
For r = 1 over the first half-cycle, the correlation integral is

m:l}nnsm (8.43)

Since e, may be expressed as the sum of eg and e, we have the following:

cc = Jqt (+1)(IR sin ot — —I— cos o)t) dt (8.44)
0 oC

Separation of the sine and cosine terms gives

n 1 n
-IR[ sinot-— | t .
cc S sin ® C h COS ® (8.45)
= —(I—Ii cos (ot)n - (-—I— sin (ot)n 8.46
® o \w2C 0 (8.46)
21
=—R (8.47)
[0

Therefore, the magnitude of the correlation integral is proportional to the re-
sistive component of the cell impedance at constant frequency. This is shown
qualitatively in waveforms A to C of Figure 8.13a. Graphical multiplication of
waveform B and e, in A gives the correlation waveform C. The shaded areas
represent areas that cancel upon integration and the unshaded area represents
[ re, dt.

Instrumentally, the cross-correlation and integration may be easily carried
out by the circuit shown in Figure 8.13b. The cell is arranged so that it is the
input impedance to the familiar current follower. If a sinusoidal voltage €, is
impressed across the cell, the output of operational amplifier OA1l is propor-
tional to and in phase with the current i (see waveform A). Since i is in phase
with ez, we may use the output of OA1 to generate the bipolar square wave of
waveform B. This is accomplished by the comparator, which is adjusted so that
its output alternates between its positive and negative limits as the current wave-
form changes sign. The output of the comparator is connected to the four-quad-
rant multiplier, which carries out the multiplication of the square wave with e,.
The output of the multiplier is then filtered by the active low-pass filter to pro-
vide a dc output voltage proportional to R.
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Circuitry similar to that presented in Figure 8.13b has been used to ana-
lyze cells with impedances ranging from 10% to 10'! Q with 1% accuracy and
resolution better than 1 part in 10* over a frequency range of 0.005 Hz to 10
kHz [14]. The technique has been especially useful for studies of the reaction
kinetics of moderately fast chemical reactions. Kadish et al. [15] used phase-
selective techniques to make ac impedance measurements to evaluate reference
electrodes for use in nonaqueous solvents. Recent decreases in the cost of inte-
grated function modules such as analog multipliers, oscillators, and phase-locked
loops make this type of phase-selective instrumentation more accessible than
ever.

Traditionally, the instrument of choice for accurate conductance measure-
ments that are relatively free of capacitance effects has been the ac Wheatstone
bridge illustrated in Figure 8.14. The details of operation and the derivation of
the balance condition of the ac bridge are presented in considerable detail else-
where [16,17]. The balance condition is exactly analogous to that of the dc
bridge except that impedance vectors must be substituted for resistances in the
arms of the bridge when reactive circuit elements are present.

At balance, the points at d and b on the ac bridge must be equal in mag-
nitude as well as in phase. The simplest method for determining when this
condition exists is to use an oscilloscope connected as shown in the figure as
the null detector. If precautions are taken to ensure that the excitation and the
null signal are electronically isolated, the balance condition is easily, albeit
slowly, obtained [16].

Assuming that the bridge is operated at frequencies for which the parallel
capacitance of the cell has negligible conductance, the bridge will balance when
R, = R,; and C, = C_,,. Bridges that have been carefully calibrated against

S

known standard resistors may achieve accuracies of 0.01%. With careful prepa-

a
w 7 L//? b
generator T Ceei ~
R
S Rcell Y N
Z Unknown
Z Cs
impedance
c 2,

Figure 8.14 Impedance bridge.
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ration of solutions and control of experimental conditions, the measurement of
conductances by this method ranks among the most accurate and precise of all
electrochemical techniques.

C. Bipolar Pulse Measurements

The bipolar pulse technique for measuring solution resistance minimizes the
effects of both the series and parallel cell capacitances in a unique way. The
instrumentation for this technique is illustrated in Figure 8.15. The technique
consists of applying two consecutive voltage pulses of equal magnitude and pulse
width but of opposite polarity to a cell and then measuring the cell current
precisely at the end of the second pulse [18].

The pulses are provided by a precision bipolar voltage source, which is
switched into the input of the pulsing amplifier by the switch at point A in the
circuit. A very accurate crystal-controlled timing circuit (not shown) drives the
switch to ensure that the pulses are symmetrical. The pulsing amplifier inverts
the signal as shown by waveform B and supplies current to the cell. The cell
current is amplified by the current follower, the output of which is illustrated
by waveform C.

At the beginning of the first pulse, any parallel capacitance in the cell is
rapidly charged, producing the small spike in waveform C. As long as
t, << R,C,, the potential developed across C, will be small compared to the ex-

ss?
citation potential E; . During t,, the current will decrease slightly as the poten-
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Figure 8.15 Bipolar pulse conductance measurement system.



262 Holler and Enke

tial across C increases. At the end of the first pulse, the polarity is quickly re-
versed, again resulting in the small spike due to charging of the parallel capaci-
tance. Assuming that t, = t,, the double layer is exactly discharged during the
second half of the cycle, and the cell current at the end of t, is due to the re-
sistive component of the cell impedance alone.

The sample-and-hold amplifier samples the output of OA2 during t, as
shown by waveform D and holds the signal E_, at the exact end of the second
pulse. The falling edge of signal D fires a monostable multivibrator generating
a trigger pulse (E) for the analog-to-digital conversion of the sample-and-hold
output. Between pulses the cell is held at ground potential in order to eliminate
any spurious currents.

The resistance of the cell is calculated from the following expressions.
Since, at the end of t,,

E E.
iy = out and R =—2 (8.48)
Rf 1cell
we have
R =R (8.49)
E

If the pulse widths of the two pulses are equal to within 1% and the double-
layer voltage can be kept to less than 1% of the applied voltage by keeping the
pulses short (i.e., 10 us to 10 ms in duration), the conductance may be deter-
mined to within 0.01% [18].

The advantages of the bipolar pulse technique include speed (discrete
measurements at a rate as high as 30 kHz), accuracy, and signal-to-noise ra-
tio. The system has been employed as a detector in automated conductometric
titrations and in stopped-flow mixing systems with excellent results.

In another variation of the bipolar pulse technique, a bipolar current pulse
is applied to a conductance cell, and the voltage is sampled at the end of the
second pulse [19]. Analogously, the solution resistance is calculated from R, =
E easured/ Lapplied- This technique has also been applied with good success to chemi-
cal problems similar to those mentioned above.

Applications of the bipolar pulse technique have demonstrated its utility in
a variety of experiments, but it is particularly useful in monitoring reaction
kinetics [18]. The technique has been shown to be useful on the stopped-flow
time scale by the investigation of the dehydration of carbonic acid [20]. The
study of this widely used text reaction demonstrates the accuracy and precision
of the method. A sample data set from a single experiment is shown in Figure
8.16, and the excellent precision obtainable in such experiments is evident. The
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Figure 8.16 Reaction curve for the dehydration of carbonic acid by conductomet-
ric detection. Lower: dots, every tenth experimental point; solid line, fitted exponential
curve. Middle: dots, logarithmic plot, every tenth point; solid line, least-squares line.
Upper: residuals (G - G,.4). [From Ref. 20, reprinted with permission. Copyright 1978
American Chemical Society.]

standard error of the estimate of the fitted first-order logarithmic plot (middle
curve) amounts to 0.2% of the conductance change or 0.015% of the average
conductance during the course of the reaction. Using a computer-controlled
instrument with simultaneous measurement of conductance and temperature, it
is also possible to correct conductance measurements to constant temperature.

More recently, the kinetics of the urease-catalyzed decomposition of urea
were investigated using a wide-range bipolar pulse instrument capable of both
current and voltage pulse modes with either integrated or sampled data acqui-



264 Holler and Enke

sition [21]. With this instrument, conductance accuracy of 1% was attained over
the range of 5 x 10~ mho to 10 mho. Accuracy of 0.001-0.01 % was achieved
over the range of 10-® mho to 1 mho while measurements were made in as few
as 32 us.

A novel application of the bipolar pulse technique that introduces a degree
of selectivity into conductometric methods is found in the measurement of the
conductance of ion-selective electrodes as a means of rapidly measuring ion
concentrations [22]. For example, working curves of conductance versus log
concentration for Ca?* are linear over at least four decades of concentration with
a detection limit of 10-® M. The response time for measuring the conductance
of a calcium ion-selective electrode is about 10 ms. Other applications of the
bipolar pulse technique, including the measurement of critical micelle concen-
trations [23] and high-precision conductometric titrations [24], have appeared
in the literature, but none is more significant than its use as a detector in ion
chromatography [25]. A large fraction of the commercial conductometric de-
tectors for ion chromatography are based on the bipolar pulse method. The
advent of the bipolar pulse conductance technique has generated renewed interest
in one of our oldest instrumental methods.
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